The isoenzyme 7 of tobacco NAD(H)-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activities in vivo.

نویسندگان

  • Damianos S Skopelitis
  • Nikolaos V Paranychianakis
  • Antonios Kouvarakis
  • Apostolis Spyros
  • Euripides G Stephanou
  • Kalliopi A Roubelakis-Angelakis
چکیده

Following the discovery of glutamine synthetase/glutamate (Glu) synthase, the physiological roles of Glu dehydrogenase (GDH) in nitrogen metabolism in plants remain obscure and is the subject of considerable controversy. Recently, transgenics were used to overexpress the gene encoding for the beta-subunit polypeptide of GDH, resulting in the GDH-isoenzyme 1 deaminating in vivo Glu. In this work, we present transgenic tobacco (Nicotiana tabacum) plants overexpressing the plant gdh gene encoding for the alpha-subunit polypeptide of GDH. The levels of transcript correlated well with the levels of total GDH protein, the alpha-subunit polypeptide, and the abundance of GDH-anionic isoenzymes. Assays of transgenic plant extracts revealed high in vitro aminating and low deaminating activities. However, gas chromatography/mass spectrometry analysis of the metabolic fate of (15)NH(4) or [(15)N]Glu revealed that GDH-isoenzyme 7 mostly deaminates Glu and also exhibits low ammonium assimilating activity. These and previous results firmly establish the direction of the reactions catalyzed by the anionic and cationic isoenzymes of GDH in vivo under normal growth conditions and reveal a paradox between the in vitro and in vivo enzyme activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification and properties of L-alanine dehydrogenase of the phototrophic bacterium Rhodobacter capsulatus E1F1.

In the phototrophic nonsulfur bacterium Rhodobacter capsulatus E1F1, L-alanine dehydrogenase aminating activity functions as an alternative route for ammonia assimilation when glutamine synthetase is inactivated. L-Alanine dehydrogenase deaminating activity participates in the supply of organic carbon to cells growing on L-alanine as the sole carbon source. L-Alanine dehydrogenase is induced in...

متن کامل

Physical and Kinetic Properties of the Nicotinamide Adenine Dinucleotide-specific Glutamate Dehydrogenase Purified from Chlorella sorokiniana.

The nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (l-glutamate:NAD(+) oxidoreductase, EC 1.4.1.2) of Chlorella sorokiniana was purified 1,000-fold to electrophoretic homogeneity. The native enzyme was shown to have a molecular weight of 180,000 and to be composed of four identical subunits with a molecular weight of 45,000. The N-terminal amino acid was determined to be lys...

متن کامل

Tobacco isoenzyme 1 of NAD(H)-dependent glutamate dehydrogenase catabolizes glutamate in vivo.

Glutamate (Glu) dehydrogenase (GDH, EC 1.4.1.2-1.4.1.4) catalyzes in vitro the reversible amination of 2-oxoglutarate to Glu. The in vivo direction(s) of the GDH reaction in higher plants and hence the role(s) of this enzyme is unclear, a situation confounded by the existence of isoenzymes comprised totally of either GDH beta- (isoenzyme 1) or alpha- (isoenzyme 7) subunits, as well as another f...

متن کامل

Preliminary Report of NAD+-Dependent Amino Acid Dehydrogenase Producing Bacteria Isolated from Soil

Amino acid dehydrogenases (L-amino acid: oxidoreductase deaminating EC 1.4.1.X) are members of the wider superfamily of oxidoreductases that catalyze the reversible oxidative deamination of an amino acid to its keto acid and ammonia with the concomitant reduction of either NAD+, NADP+ or FAD. These enzymes have been received much attention as biocatalysts for use in biosensors or diagnostic kit...

متن کامل

Glutamate dehydrogenase from Medicago sativa L., purification and comparative kinetic studies of the organ-specific multiple forms.

NAD-specific glutamate dehydrogenase [L-glutamate: NAD+ oxidoreductase (deaminating) EC 1.4.1.2] from Medicago sativa constitutes organ-specific patterns of isoenzymes. The isoenzyme-patterns of seeds (GDH-I) and roots (GDH-II) were purified 1520-fold and 92-fold, respectively. All isoenzymes of both patterns remain stable throughout the purification procedures. Isoenzyme a7, the only isoenzyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 145 4  شماره 

صفحات  -

تاریخ انتشار 2007